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Abstract. One of the most significant error contributors to preliminary design tools for Photovol-

taic power systems is related to the simple parametric Clear Sky models. Therefore, this paper fo-

cuses on providing a methodology and a more sophisticated open-source tool for 3 commonly used 

Clear Sky models. This includes all relevant steps involved in the process - from filtering the raw 

meteorological data, identification of Clear Sky regions, data redistribution to genetic optimiza-

tion of selected model parameter, etc.use case is built upon a multiyear dataset obtained from TU 

Varna meteorological station between 2012-2016. A significantly higher density distribution of 

Clear sky segments was identified during the summer through the Clear Sky Identification algo-

rithm. To avoid the risk of overfitting the models to purely summer months and poor model fits in 

winter months, which was found to be the case with the legacy model, the underrepresented clear 

sky regions (based on θ) were replicated until uniform distribution is attained.  Subsequently, a 

genetic optimization was applied to selected parameters in the Clear Sky algorithms and the up-

dated models showed a significant improvement in low winter months (θ) and even overall per-

formance boost RMSE / MAE /R2. Furthermore, such validations and optimizations are recom-

mended prior to any design or real-time PV-system analysis for the specific location. 
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1 Introduction  

Living in a decade of renewable energy and in particular, solar energy, photovoltaics (PV) became 

a mainstream energy source with potentially decreasing governmental subsidies on the industry side, 

but ever increasing interest (Reno & Hansen, 2016). Moreover, a trendreaching the asymptotic effect 

of economically valuable efficiency increase in academic studies can also be seen in recent years. 

Therefore, the need to improve the modelling accuracy and energy potential became paramount. 

Through the last decades multiple Clear Sky models were developed with the goal of creating a 

universal one capable of estimating the Global Horizontal Irradiance (GHI) in a cloudless sky. These 

values have been shown to be of a great importance for calculating the solar generation potential of 

PV-systems and more importantly Direct Beam (DBI) & Global Diffuse Irradiance (GDI) from GHI.   

There are two types of Clear Sky Models, first physical parameterization models like REST2, 

SMARTS, etc, which physically estimate the solar absorption from O3, NO2, mixed gasses, water 

precipitation, also the aerosol extinction and most importantly the Rayleigh scattering. These state of 

the art models achieve very high performance and consequently are the choice for satellite remote 

sensing systems like Galileo (ESA, 2017) . However, they have one important limitation – the necessi-

ty for at least 10 hard to acquire parameters.(Gueymard, 2008) . 

Simpler models on the other hand like the ones by Robledo & Soler (Robledo & Soler, 2000), 

Innechen and Perez (Ineichen & Perez, 2002), Hottel(Hottel, 1976), are widely used in tools for pre-

liminary PV-system sizing, performance evaluation and equipment calibration like in one of the wide-

ly used tools for preliminary PV-system design – PV-Syst. For such models, many parameters like 

Linkie Turbidity (TL) for example are constant for all locations and even all seasons. These simplifi-

cations and the corresponding models have a major drawback of being extremely sensitive to local 

meteorological variations. Multiple validation studies have been conducted across the globe and the 

findings were vastly different depending on the location, type of climate and the specific model. 

(Badescu et al., 2012) (Reno et al., 2014.) Moreover, the majority of the models were developed with 

the goal of estimating the overall energy yield of a system and therefore have a great accuracy varia-
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bility through the short-term periods of the year – all of them with correlation to higher Zenith angles 

(θ), which are predominant during the winter months.  

These models suffer from significant underperformance during the winter months and the detailed 

PV-analysis with such models will have too low confidence interval for any further conclusions. To 

address the issue at hand, the paper proposes a workflow / process and open-source tool allowing eve-

ry scientist or engineer to improve the performance of such low fidelity Clear Sky models specifically 

for its case of interest based on purely GHI data in time series. Such data is available through many 

sources – from satellite and GIS to the local National Meteorological Organizations. 

The secondary goal will be to provide an improved Clear Sky models for the North-East Bulgaria, 

through execution of the whole methodology with the TU Varna multiyear meteorological data. 

Therefore, to evaluate and improve the accuracy of PV-modelling software and as a part of the ef-

fort of TU Varna for developing an end-to-end PV-modelling research tool, this study will focus on 

the validation and optimization of 3 commonly used Clear Sky algorithms. 

2 Overview of the process 

In order to achieve the goals of the paper, first, a high-level overview of the methodology is adopt-

ed. The result of this methodology and the algorithm that followed afterwards can be seen in the func-

tional flow diagram in Figure 1. As it can be seen from the diagram, first the raw multiyear meteoro-

logical data is loaded, filtered for days containing erroneous readings or missing data and last but not 

least the training set for optimization is selected, see Section 3.  

The next crucial step, see Section 4, is the identification of the clear sky regions (regions with 

Global horizontal irradiance (GHI) unscatterred by clouds or other atmospheric phenomena). This is 

achieved by comparing consecutive GHI measurements, their speed of change and other thresholds 

with the best fitting Clear sky model (iteratively chosen).  

Once the Clear Sky regions are identified, all clear models are executed and a statistical analysis of 

their best fit is performed, see Section 5 and Section 6. Those statistical results are then used for vali-

dation purposes for first choosing the most accurate model at the location of interest and then for ini-

tial value of the global optimization of the empirical parameters.  

 

 
Fig. 1.  Algorithm overview 
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3 Data Acquisition and Preprocessing  

The Technical University of Varna (TU-Varna) multiyear meteorological measurements were ob-

tained for the period between 2012-2016 year from the meteorological station of TU-Varna 

(43°13.3858'N, 27°56.3065'E ).  

This dataset includes measurements from two sensors for Global Horizontal Irradiance (GHI), for 

Ambient temperature (Tamb), Windspeed (V) and Atmospheric Pressure (p), where a single sensor pro-

vides humidity data (η). The time-sampling of the station is 10 min and is remotely logged on a cen-

tralized system without any preprocessing or filtering. Therefore, after a short investigation, it was 

concluded that the raw dataset contains several errors. Those are: missing loggings of some of the sen-

sors, missing timestamps, clearly incorrect values of the windspeed and the most significant a clear 

mismatch between timestamp and the GHI measurements. In order to reduce the effect of those errors 

to minimum, but keep the sample size similar, three actions were applied. First, all days with missing 

measurements of GHI or timestamps (days with less 144 samples) were excluded from the data. 

 

Once the first automatic filter is applied, the solar zenith (θz) angle is calculated using Equa-

tions 1-6 in Appendix A , (Duffie et al., 1985). By definition, θz is between -90° and +90°, when the 

sun is above the horizon. Therefore, the algorithm automatically detects the days with mismatch be-

tween the timestamps and the GHI measurements, by looking for positive GHI when the sun is below 

horizon, adding 1.5° threshold for accounting phenomena like reflection and cloud scattering of dif-

fuse irradiance. 

Some of these filtered days, however, have errorless measurements, with the only exception of 

their timestamp. Therefore, an algorithm was developed to move the whole dataset for the problematic 

days back or further and allocate the first GHI measurement to the sunrise or θz = -90°, see Figure 2. 

Since this solution works for the majority, but not for all days – these out of sync days and their data 

correctness visually verified and if necessary, filtered out.   

 

 

 

4 Identification of Clear sky period 

Since the meteorological system logs measurements on continuous steps, there arises the need for 

identification of Clear Sky periods from the ones with clouds, reflections or sensor errors. The most 

robust way for this is the usage of direct (beam) normal Irradiance (DNI) and GHI data.  However, due 

to the lack of such data, alternative method can be applied. It is a modification of the proposed criteria 

by Reno et all  (Reno & Hansen, 2016) which does not take into account the “ L-length” criteria, but 

Fig 2 Example data allocation demonstration for summer day with timestamp mismatch 
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imposes new thresholds and additional criteria limiting the absolute error of the Clear Sky Model be-

low 12.5%.  

Initially, the filtering algorithm assumes and uses the best original Clear Sky models from litera-

ture, Hottel, (Hottel, 1976) and applies all filter criteria based on it.  For more information on the Hot-

tel, please refer to Section 5. For all filters and threshold values please refer to Table 1, taking into 

account that the applied moving window was 4 samples or 40 min. 

 

Table 1. Threshold criteria for Clear Sky period Identification 

Criteria comparing GHI to Clear Sky 
Threshold 

Δ Mean of mov. Window 60 W/m2 or ±10% GHI 

Δ Max of mov. Window 70 W/m2 or ±10% GHI 

Max absolute error / single sample /  80 W/m2 or ±12.5% 

Δ Rate of GHI Change /single sample/  ±12.5 W/m2 

σ of mov. Window < 40 

Reflections, scattering at low θz Filter [ -85° ; + 85° ] 

 

After applying the identification algorithm, 22349 samples or 3725 h of the filtered dataset between 

2012-2016 were classified as Clear Sky, corresponding to 24% of the daily dataset from Varna, Bul-

garia.  

An example showing the filtering can be seen in Figures 3. Starting with the results in Figure 3 (a), 

(b), it can be seen that the algorithm is capable of identifying Clear Sky samples from different sea-

sons, resulting in high or low GHI maximums at solar noon, depending on θz and Earth’s declination, 

β. 

 

 

Moreover, Figure 3(b) clearly validates the need for an optimization of the Hottel’s Model for 

North-East Bulgaria showing an underestimation of between 3-7% during the winter months. Addi-

tionally, the figures also verify the chosen thresholds for maximum and mean errors by allowing iden-

tification with not optimally fitted Clear Sky model. The samples and periods with scattered clouds are 

also cleaned from the dataset, as it can be seen with the GHI peaks in Figure 3(b), (c), not meeting 

almost all criteria. 

Fig 3 Demonstration of Clear Sky Identification filters 
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Please note the filtered periods at 9:30 in Figure 3(c) and at 17:20 in Figure 3(d), which is a good 

illustration of the effectiveness of numerical differentiation threshold, ±12.5 W/m2 . This is not for the 

whole moving window (multiple samples), but for the single measurement, where all other criteria are 

satisfied (including σ of the moving window).   

All in all, the distribution of the identified samples is crucial for the optimization process, see Sec-

tion 6.  

Two distributions are analyzed, see Figure 4. Figure 4(a), given on the left-hand side of the dia-

gram, clearly shows that the original measurements of GHI are with higher density on the low spec-

trum and are exponentially inversely decreasing to the measured GHI. After identification of the Clear 

Sky periods, the distribution becomes more uniform (maximum deviation of 23%), with two minor 

exceptions for the range of 30-70 W/m2 and higher than 900 W/m2.  Therefore, no specific measures 

need to be taken for the GHI distribution. 

 

This, however, is not the case for the distribution on a day-of-the-year basis, see Figure 4(b). As 

expected, the density is shifted to the summer, where the cloudless periods are substantially higher 

than those during the winters and the autumns. If the dataset had been left uncorrected, it would have 

led to a GHI underestimation for the simpler Clear Sky models during autumn and winter seasons. 

Therefore, the need for weighting these sample periods is applied through a replication of the meas-

urements during the underrepresented measurement periods. This dataset will be hereinafter referred to 

as the renormalized one.  

5 Selected Clear Sky Models  

For validation purposes, several common Clear Sky models are selected. These are Hottel (Hottel, 

1976), and Kasten (Kasten, 1980),  Robledo and Soler (Robledo & Soler, 2000) 

The main reason for this choice is governed by the availability of measurements by the meteorolog-

ical station. The authors acknowledge that more complex and state of the art models like REST2, Bird 

and MAC are likely to provide better accuracy, but this is impossible to validate or optimize with con-

fidence without retrieval of data for atmospheric parameters like atmospheric ozone and NO2 content, 

ground reflectance, etc. These are also very rarely available measurements during the initial stages of 

PV-system development and hence it is not feasible to expect unless GIS information is integrated in 

the process.  

It should be noted that the short description of the models may not provide all the information nec-

essary for the reproduction directly from the paper– in such cases, please refer to the source provided 

for calculation of the hidden parameter estimations, like the extraterrestrial radiation, see Equation 1 

and Appendix A for the rest of the solar angles.  
 

𝐺𝑜𝑛 = 𝐺𝑠𝑐( 1.0011 + 0.034221𝑐𝑜𝑠𝐵 + 0.00128𝑠𝑖𝑛𝐵 + 0.000719 cos 2𝐵 + 0.00007𝑠𝑖𝑛2𝐵 (1) 

Fig 4 Sample size density with respect to GHI (a) and Day of the year (b) 
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A very simple model, mainly used for optimisation tunning and for proof of concept, is Robledo 

and Soler (2000), which employes only the zenith angle and three other empirical parameters, see 

Equation 2.  
 

𝐺𝐻𝐼𝑅𝑆 = 1159.24 cos(𝜃𝑧)1.179 exp(−0.0019 (
𝜋

2
− 𝜃𝑧))                         (2) 

 

The second model, (Hottel 1976), uses the zenith angle (θ), the local altitude and empirical coeffi-

cients for the estimation of the beam radiation atmospheric transmittance coefficient (τb), see Equation 

3. Please note that a0, a1, k are a linear functions of the local altitude and the empirically derived coef-

ficients for the different seasons at lower altitudes below 2.5 km  (Hottel, 1976). The correction factors 

for the Mid-attitude winter of a0*1.03; a1*1.01 was also used as described by Hottel. 

Similarly, with empirically derived diffuse transmittance coefficients from Liu and Jordan  (τd) the 

diffused part of the GHI is calculated, see Equation 4. (Liu, B.Y.H., 1962) Last, the two radiation 

components added together determining the final GHI.  

 

𝜏𝑏 = 𝑎𝑜 + 𝑎1 exp(
−𝑘

co s 𝜃𝑧
 )                                                (3) 

 

𝜏𝑑 = 0.271 − 0.294𝜏𝑏     (4) 

 

𝐺𝐻𝐼𝐻𝑜𝑡𝑡𝑒𝑙 = 𝐺𝑜𝑛𝑐𝑜𝑠𝜃𝑧(𝜏𝑏 + 𝜏𝑑)           (5) 

 

𝑎0 = 0.4237 − 0.00821(6 − ℎ)2        (6) 

 

𝑎1 = 0.5055 − 0.00595(6.5 − ℎ)2        (7) 

 

𝑘 = 0.2711 − 0.001858(2.5 − ℎ)2        (8) 

 

The third investigated legacy model was developed by Kasten.(Kasten, 1980) This model has been 

modified multiple times in the past to result ultimately in models such as Innechen and Perez. It calcu-

lates the GHI based on the local altitude(h) in meters, the zenith angle (θ), but most importantly it 

takes into account the atmospheric turbidity (TL) and the air mass (AM).  Whereas the TLs are intrin-

sically complex for determination and with high variability from the local climate and environmental 

pollution, the air mass is straight forward – see Equation 9 as given in (Myers, 2013) by  Kasten and 

Young.  

 

𝐴𝑀 = 1/[𝑐𝑜𝑠θ𝑧 + 0.50572(96.07995 − θ𝑧)−1.6354]              (9) 

 

Once the air mass is known, it can be directly fed to the Kasten model through Equations 10-12.  

Standard predefined Linkie Turbidity factors for every month were selected TL = [2.3, 2.2, 2.0, 1.9, 

2.5, 2.7, 3.1, 2.9, 2.4, 1.9, 2.6, 2.1]. 

 

𝑓ℎ1 = 𝑒(−ℎ/8000)                                (10) 

 

𝑓ℎ2 = 𝑒(−ℎ/1250)                                       (11) 

 

𝐺𝐻𝐼𝑘 = 0.84 𝐼𝑜𝑐𝑜𝑠(θ𝑧)𝑒−0.027𝐴𝑀(𝑓ℎ1+𝑓ℎ2(𝑇𝐿−1))                (12) 

 

 It is worth mentioning, that other common models such as ESRA2, Innechen and Perez, REST2, were 

also considered and their optimization can also be performed following the same methodology.   
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6 Validation and Optimization  

Once the basis of the models is implemented in Matlab, their performance can now be assessed 

through statistical parameters for the TU-Varna dataset. For overall(annual) performance evaluation, 

some classical Clear Sky performance statistical parameters were chosen– RMSE, MAE, R2. This 

choice was mainly motivated by the possibility to compare results with other validation studies such as 

(Badescu et al., 2012), (Engerer & Mills, 2015), (Reno et al., 2014.) 

 Then through careful selection of the empirical parameters for optimization and choosing a mean-

ingful optimization algorithm, it is possible to improve the overall (annual) performance of the Clear 

Sky algorithm for the specific site of interest. A distinguishable feature of the current method is the 

goal of improving not only the overall (annual) performance but more importantly to minimize the 

error in high solar zenith angles (θ) for short-term (intra-day) simulations and short-term forecasting 

(in matters of minutes and hours). This is of particular importance for the TU Varna efforts to provide 

a multiscale end-to-end PV modelling. For this purpose, the optimization was based on the renormal-

ized density of clear sky regions, presented in Section 4.  

Both convex and global optimizations were considered, but the latter was chosen due to the funda-

mentally non-linear nature of the models. The specific type of optimization was the built-in Genetic 

Algorithm (GA) due to the possibility to run generations in parallel. The monitored performance crite-

ria are recommended to be Mean Absolute Error (MAE) instead of the commonly used RMSE because 

of the intrinsically high variability of external phenomena such as reflection in urban the environment. 

The tolerance for the GA was set to be 1˟10-3 or 80 generations. The tool has also implemented MSE, 

SSE, R2, RMSE metrics and the user can optimize/validate with respect to its goals. Please note that 

there is not always a physical justification behind the lower and the upper constrains for the selected 

parameters and the results should be looked from entirely data regression point of view. For the sake 

of users employing Clear Sky algorithms only for Annual energy yield only, the same optimizations 

were performed for the original dataset without any artificial renormalization. 

 

Starting from the simplest model Robledo and Soler, 3 empirical parameters were fitted through the 

GA. For easier follow up of the parameters, they will be called as follows a1 = 1159.24, a2 = 1.179, 

a3= -0.019. Since it is clear that a1 is related to the solar constant, a lower deviation band of ±10% was 

given, whereas a2, a3 were constrained for up to ±30%. The Tunned parameters and the multiyear per-

formance of the models can be seen in Table 2. Both RMSE and MAE are improved with the renor-

malized database, with the decrease of MAE being 73%, while RMSE is only 3.1%. This justifies the 

choice of using MAE as optimization weighting function and is to be expected due to the noisy Clear 

Sky Identified dataset. These are slightly higher errors than similar validation studies (Engerer & 

Mills, 2015) for different climates, which can be explained by variations of the local climate in Varna 

but also the tunning of the Clear Sky identification algorithm.   

Table 2. Robledo and Soler Clear Sky Model Optimization  

Model 
Dataset Tunned Parameters RMSE 

 

MAE R2  % 

RMSE 

Im-

prove 

 (Original) Renormalized a1=1159;  a2= 1.179;   a3= -0.0019 27.55 56.93 0.98969 - 

(Tunned) Renormalized a1= 1116; a2= 1.333;  a3= -0.00208 26.69 20.87 0.98984 3.1 

 (Original) Original a1=1159;   a2= 1.179;  a3= -0.0019 28.37 59.23 0.98584 - 

(Tunned) Original a1= 1133;  a2= 1.336;  a3= -0.00236 27.73 22.26 0.98589 2.3 

  

A closer analysis of the Robledo and Soler performance, see Figure 5-6, shows the significant 

overestimation of the original model at all GHI values. The relative error against the zenith angle, 

however, is not constant and is steadily growing with the increase of θ, reaching ~35% at sun-

rise/sunset. This is in agreement with other legacy findings for similar models (Engerer & Mills, 
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2015), (Badescu et al., 2012) and despite of the lower GHI values at these periods may have huge 

complications in the future European smart grid system. The updated model improves this behavior 

drastically. Moreover, the model has a perfect fit during the summer months, as it can be seen in Fig-

ure 7. The only relative downside of the optimization was found around noon during the winter 

months, as seen in Figure 8.   

 

 

 

 

Fig 5 Before and after Optimization  Fig 6 Relative % GHI error against θ  

 
Fig 7 Before(blue) and after(red) Optimization  Fig 8 Before(blue) and after(red) Optimization 

 

The model that provided the best performance for Varna appeared to be the one proposed by 

Hottel. Even before the optimization it was capable of estimating almost exactly summer days but had 

some deviations during the winter with underestimation of GHI, see Figure 9-10. The optimization 

limits of the Genetic Algorithm were bounded to 10% deviation for all parameters. The RMSE found 

was 22.18 and 21.71 for the original and the optimized model respectively, see Table 3. This is an 

increase of 2.1 % for the RMSE and the MAE is improved only by 2.7%. The optimized model was 

also observed to behave noticeably better in the winter months than the original one as can be seen in 

Figure 11, 12. 
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Table 3. Hottel Clear Sky Model Optimization  

Model Dataset Tunned Parameters RMSE MAE R2 
% RMSE 

Improve 

(Original) 
Renor-

malized 

a01= 0.4237;    a02= 0.00821;   a11= 0.5055; 

22.18 17.35 0.9931 - a12=0.00595; k1=0.2711;   k2 = 0.01858 

td1= 0.271;  td2=0.294 

(Tunned) 
Renor-

malized 

a01= 0.429;     a02= 0.00759;   a11= 0.4844; 

21.71 16.88 0.9933 2.1 a12=0.00605; k1=0.2448; k2 = 0.01697 

td1= 0.2555;  td2=0.309 

(Original) Original 

a01= 0.4237;    a02= 0.00821;   a11= 0.5055; 

23.262 18.61 0.9903 - a12=0.00595; k1=0.2711; k2 = 0.01858 

td1= 0.271;  td2=0.294 

(Tunned) Original 

a01= 0.4500;    a02= 0.0080;   a11= 0.4803 

22.694 18.05 0.9906 2.4 a12=0.00594 ; k1=0.2441 ; k2 = 0.01726 

td1= 0.261;  td2=0.3188 

 

 

Fig 9 Before and after Optimization  Fig 10 Relative % GHI error against θ  

 

Fig 11 Before(blue) and after(red) Optimization  Fig 12 Before(blue) and after(red) Optimization 

 

The original Kasten, which has a Linkie turbidity (TL) factor for every month was found to be 

the least accurate for the meteorological conditions in the tested dataset in terms of MAE. The RMSE 

on the other hand was of the same order as the other two models. The original model is overestimating 

all Clear Sky GHI measurements for Varna. A decision has been made, to optimize not only the TLs, 

but also the factor a1 = 0.84 which is a direct multiplication of the estimated GHI and the factor of the 

exponent a2 = 0.027.  The limits were ±15% for a1, ±10% for a2 and [-10% +50%] for the TLs, since 

the TLs in cities are expected to be higher than the standard ones. The multiyear results from the tests 

and the optimizations can be seen in Table 4 with most noticeable improvement from all previous 
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models 15% for RMSE and 70% decrease of MAE. In a more detailed analysis, however, see Figure 

13-16, it could be observed that both the original and optimized models underperform for almost all 

conditions – low elevation angles (α = 90 – θ), winter months, etc. with only relatively advantageous 

estimations around the summer months and high elevation angles for the optimized model, see Figure 

15.  It can, therefrom, be concluded that tools and simulations using the optimized Kasten, are not 

suitable for the meteorological conditions of cities in North East Bulgaria.  

 Table 4. Kasten Clear Sky Model Optimization  

Model Dataset Tunned Parameters 
RMSE 

 
MAE R2 

% RMSE 

Improve 

(Original) 
Renor-

malized 

a1=0.84   a2=0.027 

TL= [ 2.3, 2.2, 2.0, 1.9, 2.5, 2.7, 3.1, 2.9, 

2.4, 1.9, 2.6, 2.1]  
26.6 138.8 0.9914 - 

(Tunned) 
Renor-

malized 

a1=0.714  a2=0.0297 

TL= [1.84, 1.76,  1.60,   1.52,  2.0,  2.16,  

2.48,  2.32,  1.92,  1.52,  2.08, 1.68]  
22.61 46.7 0.9914 15.0 

(Original) Original 

a1=0.84   a2=0.027 

TL= [ 2.3, 2.2, 2.0, 1.9, 2.5, 2.7, 3.1, 2.9, 

2.4, 1.9, 2.6, 2.1] 

26.02 18.6 0.9891 - 

(Tunned) Original 

a1= 0.7140   a2= 0.0268 

TL= [2.18    2.61  1.92    1.89    2.16   

3.01    2.83    2.63    1.96    1.75    3.0455    

1.91] 

22.11 47.1 0.9891 15.0 

 

Fig 13 Before and after Optimization  Fig 14 GHI against the zenith angle 

 
Fig 15 Before(blue) and after(red) Optimization  Fig 16 Before(blue) and after(red) Optimization 
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7 Conclusions and Recommendations  

The present paper focuses exclusively on developing a methodology for validation and optimiza-

tion of simple legacy Clear Sky algorithms with a goal of decreasing both the overall annual error, 

some specific short-term underperformances. All this was achieved through creating an end-to-end 

workflow covering all the procedures from filtering raw meteorological data to the identification of the 

clear sky periods, the statistical validation, renormalization of the dataset and last but not least an at-

tempt for optimization of their parameters through genetic optimization. To confirm the usability of 

the methodology a Matlab-based tool was created and a use case including models such as Robledo 

and Soler, Kasten and Hottel were implemented for Varna, Bulgaria. The results showed that Kasten is 

an unsuitable model for the tested meteorological conditions, whereas Hottel and Robledo could be 

used for both short and long-term analysis.  

 The optimized Hottel Clear sky Model was concluded to be the fit for North East Bulgaria in terms 

of both RMSE and MAE. The MAE was lower than all the other models and the independent visual 

check confirmed one of the main conclusions drawn in the report for the marked distinction superiori-

ty of this tunned Clear Sky Model not only on annual bases but also for short-term periods during eve-

ry season. Last but not least, a point of caution should be made that such a supremacy can be partly 

attributed to the use of Clear Sky Identification algorithm.  

In light of the issues discussed above, the author strongly recommends a similar tunning of the pa-

rameters of legacy clear sky models for locations with close meteorological climate and atmospheric 

conditions, before employing any Clear Sky Models in any further calculations like for example Direct 

Beam (DBI) & Global Diffuse Irradiance (GDI) from GHI.  

8 Acknowledgements 

The author would like to express his gratitude to Kaloyan Kirilov for his invaluable help writing the Matlab 

code and some constructive inputs especially as regards the methodology. The current study is funded through 

the budgetary subsidies of the Technical University of Varna, allocated for research and development activities 

related to the project “НП4/2020“. 

 

 

APPENDIX A 

 

𝐵 = (𝑛 − 1)
360

365
                                                                       (1) 

 

𝛿 =
1

1000
[6.92 − 399.9 𝑐𝑜𝑠 𝐵 + 70.26 𝑠𝑖𝑛 𝐵 − 6.76 𝑐𝑜𝑠 2𝐵 + 0.907 𝑠𝑖𝑛 2𝐵 − 2.697 𝑐𝑜𝑠 3𝐵 +  1.48 𝑠𝑖𝑛 3𝐵](2) 

 

𝐸 =
229.2

100000
[7.5 + 186.8 cos 𝐵 − 3207.7 sin 2B − 1461.5 cos 2B − 4089 sin 2𝐵]                                        (3) 

 
 
𝑇𝑠𝑜𝑙𝑎𝑟 = 𝑇𝑠𝑡 + 4(15 𝐿𝑜𝑐𝑎𝑙𝑇𝑖𝑚𝑒𝑍𝑜𝑛𝑒 − 𝜙) + 𝐸                  (4) 
 

𝑤 =
𝑇𝑠𝑜𝑙𝑎𝑟

4
− 180°                                                                        (5) 

 

cos 𝜃𝑧 = cos 𝜙 cos 𝛿 cos (
𝑇𝑠𝑜𝑙𝑎𝑟

4
− 180°)  + sin 𝜙 sin 𝛿    (6) 
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