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Abstract. This present paper isrelevant to the establishment on mathematical model of the heat
interaction between the metal matrix (liquid phase- Cu) and the reinforcement (solid- Fe) phase,
during the production of the Metal Matrix Composites (MMCs) by the method of capillary molding.
In this case a heat object is substituted with a mathematical model, drawn up and grounded to
investigate the original behavior and properties, clarifies temperature fields in bodies.

The established simulation clarifies temperature fields and the causal liaison between the
metal matrix and the reinforcement phase in the formation of the macro and microstructure at the
time of production of MMCs. Casting process simulation is an approved method for the optimization
of the methods of casting technology. The basic opportunities, ideology and structure of the software
"MATLAB FEA" are introduced to simulate the casting technology. The possibilities of the product
are illustrated by the results, obtained from a computer simulation by the technical process of the
production of MMCs.

Keywords: mathematical model, MATLAB FEA, finite elementgsting process simulation,
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1 I ntroduction

Casting is an old art, but with the developmentathematical modeling and computer simulation
in the field of material science in recent yearhais already become a rapidly growing field oésck.

The advent of software products into global castiag become an integral part of the research and
design activities, related to the refinement antindpation of foundry technologies, the creation of
castings with high performance, the lowering of ahebnsumption, the realization of energy savings,
also rapid and accurate and qualitative and qaivet diagnostics of a wide range of possible dsfec
(3unoBues B., 1989), Mapkos K. 2014), (Ilyouna M. 2011).

The finite element method is a method that alloies numerical modeling of complex systems,
provided that they are considered as continuous@mients, and their dynamics is described by linea
private differential equations: for example, theverment of a string fixed to one of its ends, theaty-
ics of fluid, the deformation of metal structureslathers. One of the most famous software for such
purposes is known as MATLAB FEA (Finite Element Arsés) Mapxos 1. ,2002), (Markov |. 2002).

In the present case, a mathematical model of tHentemaction has been created. Substitution of a
thermal object with a mathematical model, comp#dad grounded to study the behavior and properties
of the two phases (liquid and solid) constituting MMC (Daniel B.,1976), (Geslin P. 2012). In the
theory of heat exchange, classes of inverse tdaksap increasingly important role and are oftes th
only way to get results. They allow the determimawf the causes of the heat process by a cegain s
of events (Klien S.,2015). In the problem undersideration, this theory can be applied to elucidate
the temperature fields in the bodies and the cdiasbn between the metal matrix and the reinforce
ment phase in the production of the MMCs.

The liquid metal is emerging as a new technolagyte production of a topological complex of the
metal-composite structures with an ultra-high ifateial area and other unique qualities, duringsyre
thesis of complex relief MMCs by the capillary miolgl method Ranes P. 2010). This process is known
as an empirically selective dissolution of the oamponent of a multicomponent solid alloy in a rolt
metal to obtain the desired structures (Xu Y. 200Wg present elaboration demonstrates the use of a
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mesoscale phase field to form a mathematical matlelying the result of the interaction and diffusio
between the liquid and the solid phases duringptfeeluction of MMCs by the capillary molding
method. It's analyzed how these mechanisms intfdotobtain a wide variety of topographically un-
related and related structures.

2 Exposition
2.1 Temperatures Determination During the Production of MMCs

The research process was also accompanied by nmepthe temperature in the working chamber.
Based on these measurements, a mathematical moétmaction of the metal matrix and the rein-
forcement phase was created.

jul .ti
t2e *t3

Fig. 1. Thermocouples position scheme

The solution of the problem is considered in a@tatry mode, as is consistent temperature of phase
transition from solid to liquid state and the babawf the two phases relative to each other (Hie-r
forcement phase Fe and the liquid Cu matrix). Befdling the casting mold with a metallic powder
(containing 60% Fe and 40% Cu), four thermocouf@kesomium-aluminum (NiCr- NiAl)) are attached
to the heating device and the mold - one of thentrotling and three observational (Fig. 1). Thea th
metallic powder is placed in the casting mold. Tinmecouples measured simultaneously four tempera-
tures on the surface of the mold cavity. In ordier temperature measured to be accurate, the thermo-
couples are insulated with ceramic mixture andtiaémwadding. Type K thermocouples are connected
into the device, showing the temperature variaitioh second. The device to which the thermocouples
are connected is a four-channel analogue modul82iil- of NATIONAL INSTRUMENTS that
measures up to + 80mV. It has a high accuracy d%0guaranteed by the manufacturer. The measured
temperatures are registered, using a computdngiform of graphs (Fig. 2).
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Fig. 2. Graphs of the measured temperatures - t1 - maxiteomperature-1094 ° C; t2 - maximum tempera-
ture -1095 ° C; t3-maximum temperature -1096 ° €ph t4- Maximum temperature-1097 °C

2.2 General equationsfor creating a mathematical model

The following equations were used to solve the jemb

General equations of fluid flow and heat conduction. For modeling equations in fluid flow and
heat transfer processes, the equations of Naviek§{or instantaneous equations) and the firstjpie
of thermodynamics are adopted. The main differeatjaations are:

Continuity eguation:
@

where:t — time, sy — density, kg/m3u — velocity component in the direction x, més; velocity
component in the direction y, m/s.

Absolute, common, static and dynamic values
Referring to the relative pressurg,ghe absolute pressung,fs.i.ce) iS calculated as:

Pabsolute = Pret t Dref + Pref Zigi X+ Pref Zi (‘)iz Xi2 (2)

where:p,., — relative pressure, Pp;.r — reference pressure, Rp;- gravitational acceleration,
m/s?;w — rotational speed, rad/s

For flow without gravitational or rotational forcebe relative pressure is manometric.
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General scalar transport equation:
The following equation describes the transport passive scalar function by incompressible fluid:

of of af _ a 6_f] 6[D6_f 3)

T TV, TP Ty lPoy

where: D — diffusion, m?/¢; — passive scalar.

After simplifying the transport equatio@) as is the case, it yields the following form:

2 2 (re)=o @)

6xj 6xj 6xj

where:V; — velocity vector.

2.2 Thetask solution

Geometry and mesh elements. The object's geometry is a model of a complex friiIC com-
posed of 60% Fe and 40%Cu. The geometry of the ositgpis simplified to a cylindrical shape (Fig.
3. a).

bk

A1

a) b)

Fig. 3. Geometry a) and discretization b) of the investidaobject

Each mesh element is consisting of iron or coppetigles, developed by the "MATLAB FEA"
software product with the equations, described abbDiscretization of the finite elements is shown o
Fig. 3. b), represented in a x-y coordinate systEne discretization object is composed of triangula
finite elements, such as: number of nodes-18808beun of mesh elements 37120. The mesh grading
factor is 0,0002mm. The boundary conditions ofdbgect, shown on Fig. 4 are temperature (T), pres-
sure (P) and diffusion coefficient (D), assignedhe boundary lines of the figure. The values @f th
boundary conditions are T= 11%D, P= 95000Pa and D=7,8x1®n?/s.
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Fig. 4. Boundary conditions of the investigatedeabj

3 Experimental Results

The solution of the problem is considered in a@tatry mode, taking into account the temperature
of phase transformation from solid to liquid statéhe two elements Fe- Cu. In this case the cobasr
a lower phase transformation temperature and rtecjgs will melt first, as opposed to iron.

The figures 5, 6 and 7 illustrate the differeagologies, observed in the simulation as a famcti
of the initial materials composition. They show teenperature distribution and the evolution of the
solid-liquid interface during the formation of themposite structure with an increase in the nurober
iterations. Phase field simulation illustrates therfation of a topologically connected continuouscstru
ture after melting and infiltration of the melt (@uatrix). The 2D simulation results show that tbe-c
centration of Fe elements in the liquid part (Cut)rie the upper part of the sample is controllgdlie
steady state. The iron stays stable and affectsatheentration of Cu in the liquid side on the odphe
sample (Figure 5.b). The solid phase (Fe) anditjugdl phase (Cu melt) are moving until equilibrium
is achieved between them (Figure 7.b).
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Fig. 5. Solution of the task at O iteration (a) and 3@eiten (b)
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Fig. 6. Solution of the task at 60 iteration (a) and 9€aitien (b)
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Fig. 7. Solution of the task at 120 iteration (a) and 1B@aition (b

4 Conclusion

After the conducted investigation, based on thaltesbtained, the following more important con-
clusions can be drawn:

1.The use of a mesoscale phase field to form aenatical model has been demonstrated during
the production of a complex relief MMCs by the diapy molding method.

2. Based on the measured temperatures during dloieigtion of a complex relief MMCs, a mathe-
matical model of the behavior of the liquid phaSe (nelt) relative to the reinforcement phase (Fs) h
been made.

3. A simulation was created, which clarifies thmperature fields and the causal liaison between the
matrix and the reinforcement phase at the timebtdining the complex relief MMC by the capillary
molding method.

4. The liquid metal in the obtaining of complexieeIMMCs by the capillary molding method is
emerging as a new technology for the productioa tfpological complex of metal- composite struc-
tures with ultra-high interfacial area and otheique qualities.

5. The mathematical model, that was generatedjges\vhe possibility of clarifying the interaction
between the liquid and the solid phase, based etethperature field, thus furthermore to technology
contribute to the expected wetting on the reinforeet phase.
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